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Activation of Carbon-Hydrogen Bonds by [Rh(diphos)2J"° 

Sir: 

The activation of carbon-hydrogen bonds poses an inter­
esting and important challenge. Despite the apparent similarity 
to H2 in terms of bond energy and polarity, the C-H bond, 
unlike H2, does not readily undergo activation via oxidative 
addition. Most examples are restricted to intramolecular 
metalations1 (eq 1), in which entropic effects undoubtedly play 

H — C s _ _ C s 

M—P^ H—M—P^ (1 ) 

a major role. While C-H bond activation is also indicated by 
H/D exchange reactions of arenes2'3 using catalysts such as 
PtCl4

2- in D20/DOAc and NbH3Cp2 under D2, the mecha­
nism of the exchange and details of the activation process re­
main uncertain. In the present paper, we describe an approach 
to the activation of C-H bonds which is based on the notion 
that a highly energetic odd-electron complex can react with 

C-H bonds to form organic radicals by eq 2, and we demon­
strate that this reaction does indeed occur. Implicit in this 
approach to C-H bond activation is the view that the more 
energetic the M- species, the more stable the resultant M-H 
bond, and, when the bond dissociation energies for M-H and 
C-H are of similar value, reaction 2 may proceed at a useful 
rate.4 

M- + R-H -+ M-H 4- R- (2) 

Previously, we reported5 the electrochemical reduction of 
[Rh(diphos)2]

+ in CH3CN, Me2SO, and DMA and subse­
quent formation of the hydride, RhH(diphos)2; the overall 
reaction consumes two e_. Through a combination of elec­
trochemical and chemical techniques, we established that the 
reduction proceeds in one-electron steps, initially yielding 
[Rh(diphos)2]° which reacts with a solvent molecule to form 
the product hydride and a reducible solvent radical which 
undergoes the second electron transfer. This sequence is shown 
in eq 3-5 and represents an ECE mechanism for the reduction. 
Since eq 4 represents a subset of eq 2, thereby demonstrating 
its feasibility, we next focused on using a solvent that would 
preclude (4) and permit us to study the reaction of the Rh0 

species with added substrates. 

Rh+ + e~ — Rh- (3) 

Rh- + SoI-H — Rh-H + Sol- (4) 

Sol- + e- — Sol" (5) 

To this end, we examined the electrochemical reduction of 
[Rh(diphos)2]

+ in benzonitrile. Cyclic voltammetry (CV) of 
[Rh(diphos)2] (ClO4) in this solvent at a hanging Hg drop 
electrode (HMDE) shows a reversible one-electron couple at 
—2.10 V vs. an Ag/O.l'M AgNO3 in benzonitrile reference. 
Constant potential coulometry (CPC) at —2.20 V yields, as 
before,5 a coulometric n value of 2 and the hydride, RhH(di-
phos)2, as the sole inorganic product. Analysis of the organic 
distillate by GC-MS reveals that tributylamine is formed in 
80-95% conversion with respect to the initial amount of Rh 
complex. 1-Butene is also produced, although a quantitative 
analysis of the yield was not obtained because of evaporation.6 

In the previous electrolyses5 the source of the hydrogen atom 
was demonstrated to be the solvent. In benzonitrile, however, 
the primary source of the hydrogen atom for Rh hydride for­
mation is the electrolyte, tetrabutylammonium perchlorate, 
and not the solvent. The formation of Hofmann degradation 
products from the reaction of electrochemically generated 
anionic intermediates with tetraalkylammonium salts is not 
uncommon.7 We envision this to be a similar process involving 
initial attack of Rh0 on a C-H bond of the electrolyte followed 
by an electron transfer and subsequent elimination to yield 
tributylamine and 1-butene. 

The viability of a competition between added C-H bond 
substrates and the electrolyte was demonstrated by the gen­
eration of [Rh(diphos)2]° in a mixed solvent system. Elec­
trolysis of [Rh(diphos)2]+ in benzonitrile containing 1.0 M 
CD3CN and 0.1 M («-Bu4N)C104 yields an 1:1 mixture of 
RhH(diphos)2 and RhD(diphos)2.

8 Both a statistical correc­
tion for available hydrogens and an isotope effect should favor 
reaction with (/2-Bu4N)ClO4 and compensate for the differ­
ences in molar concentrations of the two substrates. Thus, the 
observed 1:1 RhH-RhD product composition indicates no 
dramatic preference of the Rh0 intermediate for reaction with 
either substrate. 

It was, therefore, of primary interest to explore the reactivity 
of this Rh0 complex with unactivated C-H bonds. Electro­
chemical reduction of [Rh(diphos)2]

+ in a 1:1 by volume so­
lution of benzonitrile and cyclohexane containing 0.1 M (n-
Bu4N)ClO4 reveals10 the formation of cyclohexyl radical as 
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determined by the identification of cyclohexene and bicyclo-
hexyl, the characteristic disproportionation and dlmerization 
products" (eq 6). The yield of these bimolecular radical 

O + O 
(6) 

products is ~5% with respect to the initial Rh concentration. 
The direct interaction of [Rh(diphos)2]° with cyclohexane is 
established by reduction of the complex in a 1:1 solution of 
benzonitrile and cyclohexane-^n- Again, cyclohexene and 
bicyclohexyl are observed; in addition, RhD(diphos)2 is iso­
lated as ~30% of the rhodium "hydride" product.7'8'12'13 

To probe further the reactivity and radical nature of 
[Rh(diphos)2]°, [Rh(diphos)2]

+was reduced in a 1:1 by vol­
ume solution of benzonitrile and ?e/7-butylbenzene. Analysis 
of the solution by GC-MS following the electrolysis indicates 
that isobutylbenzene is produced in ~10% conversion with 
respect to the electroactive Rh complex. This result indicates 
that the classic neophyl rearrangement has occurred, signalling 
the formation of the neophyl radical. The reduction of 
[Rh(diphos)2]+ in the presence of tert-butylbenzene-dg also 
generates the neophyl rearranged product and RhD(diphos)2 
is isolated as 33% of the "hydride" product.8,13 Thus, the direct 
reaction of the Rh0 complex with /erf-butylbenzene-^9 is es­
tablished as the source of the neophyl radical as shown in eq 
7 and 8. 

[Rh(diphos)2]° + RhD(diphos)2 + (7) 

- - • d. 

(8) 

The sole transition-metal product in all the aforementioned 
electrolyses is the rhodium(I) hydride, or deuteride, which is 
isolated in ~90% yield. This complex, RhH(diphos)2, is elec-
trochemically inactive at these potentials and, in general, 
precipitates from the electrolysis solution. This product can 
easily be reconverted into the electroactive [Rh(diphos)2] + 

by reaction with 1 equiv of acid. Thus, reaction of the hydride 
with benzoic acid or />-toluenesulfonic acid gives a quantitative 
yield of the corresponding Rh1 salts; hydrogen is also produced 
(eq 9). The RhH(diphos)2 is also transformed14 into [Rh(di-
phos)2]

+OH~ in ~80% yield via reaction with O2 by a mech­
anism that is not presently understood. These reactions of the 
Rh hydride suggest a way to make the system electrocatalytic 
for the activation of C-H bonds. 

RhH(diphos)2 + HA — [Rh(diphos)2]+A- + H2 (9) 

In summary, the labeling experiments demonstrate the 
transfer of deuterium from substrate to rhodium. The product 
studies show that the substrate is converted into a free radical 
by this process. These studies, in conjunction with our previous 
chemical and electrochemical studies,5 constitute the basis for 
our recognition of the occurrence of eq 2. Thus, we have shown 
that the Rh0 complex [Rh(diphos)2]° is capable of activating 
sp3 C-H bonds by hydrogen atom abstraction.15'17 We are 
currently working on modifications of this system such that 
the activation and functionalization of saturated alkanes can 
be performed catalytically by this indirect electrochemical 
process. 
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Total Synthesis of the Unique Indole Alkaloid 
Chuangxinmycin. Application of Nitro Group 
Displacement Reactions in Organic Synthesis 

Sir: 

Chuangxinmycin is a new antibiotic produced by the 
microorganism Actinoplanes tsinanenis n.sp., obtained from 
a soil sample collected in Tsinan, Shantung Province, China.1 

Chemical studies carried out by the Chuangxinmycin Research 
Group at the Institute of Materia Medica in Peking have led 
to the following structural assignment for this compound (the 

CO2H 

cX^CH3 

i 

relative stereochemistry of the asymmetric centers was not 
established with any certitude). Preliminary clinical studies 
at the Chinese Academy of Medical Science have, moreover, 
shown chuangxinmycin to be 78% effective in the treatment 
of septicaemia and urinary and biliary infections. 

The unique structural features (a new type of heterocyclic 
system) of chuangxinmycin, combined with its very promising 
biological activity, prompted us to attempt the total synthesis 
of this natural product. 

Our synthetic approach to this compound was guided by our 
experience with the preparation of variously substituted indoles 
by the Leimgruber-Batcho methodology.2 This process con­
sists of simply heating an o-nitrotoluene with /V.yV-dimethyl-
formamide dimethyl acetal to yield an o-nitrophenylacetal-
dehyde enamine. Subsequent reduction of the nitro group 
[Fe(II), H2, dithionite, etc.] directly furnishes the indole. This 
chemistry thus resembles the Reissert indole synthesis, but 
bypasses the final decarboxylation step. 

0002-7863/80/1502-1 165S01.00/0 

Scheme I. Retiosynthetic Analysis of Chuangxinmycin 

Several retrosynthetic pathways from the target structure 
now become apparent based on the utilization of this chemistry. 
Two possibilities, displayed in Scheme I, lead to the sulfur-
bearing nitrotoluene 3 as the required starting material. 

Our preliminary efforts to prepare 3 were founded on an 
observation recorded by Piers and co-workers in their synthesis 
of 4-mercaptoindole.3 They had shown that the halogen atom 
of 2-bromo-6-nitrotoluene could be displaced by potassium 
benzylmercaptide in DMF to afford the corresponding 
thioether in 26% yield. We, in fact, attempted to carry out this 
experiment, using the commercially available 2-chloro-6-ni-
trotoluene with HMPA as solvent. To our initial surprise, 
displacement of the nitro group had occurred instead. This 
result was, however, quite in line with previously reported data 
concerning the relative rates of displacement of various acti­
vated aromatic groups with several different nucleophiles 
(Me 2S+ > Me 3N+ > F ~ NO 2 > Cl).4 This information 
moreover suggested that the commercially available 2,6-di-
nitrotoluene might serve as a suitable precursor to the thioether 
3.5 Indeed, simply adding powdered lithium hydroxide to an 
HMPA solution of methyl thioglycolate and 2,6-dinitrotoluene 
at room temperature and stirring for 1 dav afforded 3 in good 
yield (70%): mp 46-47 0C; IR (CHCl3) 1736, 1523, 1352 
cm"1; NMR (CDCl3) 5 6.90-7.70 (m, 3 H), 3.76 (s, 3 H), 3.63 
(s, 2 H ) , 2.60 (s, 3 H). 

The conversion of this product into the corresponding indole 
now required treatment with yV.iY-dimethylformamide di­
methyl acetal. As might have been anticipated, while enamine 
formation did take place with this substrate, reaction occurred 
exclusively at the more acidic methylene group rather than at 
the methyl substituent. To shift the regiochemical course of 
this reaction, the methylene site was deactivated by converting 
the ester into the potassium salt (KOH, MeOH) of the corre­
sponding acid, thereby enabling the reaction to occur exclu­
sively at the site of the methyl group. The enamine produced 
was hydrolyzed directly to acid aldehyde by treatment with 
cold 6 N HCl, and this crude product immediately was reduced 
with FeSO^NH 4 OH. 6 The crude indole acid was esterified 
with diazomethane and chromatographed on silica gel to afford 
in 43% overall yield for these four steps7 (Scheme II) the ester 
4: mp 83-85 0C; IR (CHCl3) 1730 cm- ' ; NMR (CDCl3) 8 
7.20 (m, 4 H), 6.65 (m, 1 H), 3.70 (s, 2 H), 3.67 (s, 3 H). 

While this indole 4 could readily be transformed to a 1:1 
diastereomeric mixture of alcohols 2 (Scheme 1,Z = H; LDA, 
CH3CHO), all attempts to effect ring closure of this mixture 
by converting the hydroxyl group into a good leaving group 

© 1980 American Chemical Society 


